Contrasting outcomes of spatially implicit and spatially explicit models of vegetation dynamics in a forest-shrubland mosaic
George L.W. Perry and
Neal J. Enright
Ecological Modelling, 2007, vol. 207, issue 2, 327-338
Abstract:
Much contemporary ecology emphasises the importance of taking a spatial perspective in linking ecological patterns and processes. However, collecting and analysing spatial data is expensive. Here we compare spatially implicit and spatially explicit versions of a model of successional dynamics in a forest-shrubland mosaic in a mountain-top reserve in New Caledonia. The models are used to (i) understand the circumstances driving change in abundance of forest and shrubland, and (ii) compare the outcomes of spatially explicit and spatially implicit models of the same system. The spatially explicit model is grid-based and uses a spatially implemented ‘state-and-transition’ approach, with fire spread and seed dispersal the main spatial processes considered. The spatially implicit model is based on a transition matrix approach. Two alternative transition matrices were constructed, one based on field measurements and the other parameterised using output from the spatially explicit model. Although the averaged dynamics of the two models appear similar, the models make very different qualitative predictions about the landscape. Under the same initial parameter conditions two alternative landscape states emerge from the spatially explicit model; this is not the case for the spatially implicit model. Further, the spatial model produces outcomes much closer to those documented historically and inferred from the palæoecological record. The differences between the non-spatial and spatial models arise because, in this system, fine-scale interactions between landscape pattern and process are drivers of coarser scale dynamics, and such interactions are not included in the spatially implicit model. More generally, in order to understand coarse-scale spatial dynamics it may be important to consider local spatial patterns; spatially explicit models are those most likely to incorporate these.
Keywords: Spatial modelling; Spatial pattern; Scale; Vegetation dynamics; Disturbance regime; Succession; New Caledonia (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380007002955
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:207:y:2007:i:2:p:327-338
DOI: 10.1016/j.ecolmodel.2007.05.010
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().