Study of the inter-annual food web dynamics in the Kuparuk River with a first-order approximation inverse model
Zhenwen Wan,
Joseph J. Vallino and
Bruce J. Peterson
Ecological Modelling, 2008, vol. 211, issue 1, 97-112
Abstract:
We used a long-term observation data set (12 years) of fish, insect and primary producer standing stocks in both reference and phosphate-fertilized reaches of the Kuparuk River located on the north slope of Alaska, USA to test a recently developed first-order approximation model. The model employs a flow analysis-type approach, but uses first-order approximations between annual mean compartment stocks and environmental drivers of temperature, discharge and solar radiation. Consequently, the model is more robust and requires fewer observations than standard process-oriented models, and can utilize observations that are difficult to incorporate into process models. Unlike standard inverse models, we show that our model is capable of prediction provided sufficient data are available for model calibration and environmental drivers are known. The results show that the inter-annual variations of several components in the Kuparuk River ecosystem, including dissolve inorganic phosphate, chironomids, black flies and Arctic grayling, can be accurately approximated as a linear function of temperature, discharge and solar radiation. In particular, the model indicates that changes in river habitat brought about by proliferation of the moss Hygrohypnum spp. in the P-fertilized reach caused a temporary shift in flow paths supporting Arctic grayling from primary producers to detrital-based pathways. However, after moss establishment, primary producer flow paths to Arctic grayling returned and detrital-based pathways weakened.
Keywords: Inverse model; Ecosystem modeling; River ecosystem (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380007004310
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:211:y:2008:i:1:p:97-112
DOI: 10.1016/j.ecolmodel.2007.08.022
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().