A comparative analysis of parallel processing and super-individual methods for improving the computational performance of a large individual-based model
Hazel R. Parry and
Andrew J. Evans
Ecological Modelling, 2008, vol. 214, issue 2, 141-152
Abstract:
Individual-based modelling approaches are being used to simulate larger complex spatial systems in ecology and in other fields of research. Several novel model development issues now face researchers: in particular how to simulate large numbers of individuals with high levels of complexity, given finite computing resources. A case study of a spatially-explicit simulation of aphid population dynamics was used to assess two strategies for coping with a large number of individuals: the use of ‘super-individuals’ and parallel computing. Parallelisation of the model maintained the model structure and thus the simulation results were comparable to the original model. However, the super-individual implementation of the model caused significant changes to the model dynamics, both spatially and temporally. When super-individuals represented more than around 10 individuals it became evident that aggregate statistics generated from a super-individual model can hide more detailed deviations from an individual-level model. Improvements in memory use and model speed were perceived with both approaches. For the parallel approach, significant speed-up was only achieved when more than five processors were used and memory availability was only increased once five or more processors were used. The super-individual approach has potential to improve model speed and memory use dramatically, however this paper cautions the use of this approach for a density-dependent spatially-explicit model, unless individual variability is better taken into account.
Keywords: Agent-based modelling; Individual-based modelling; Parallel computing; Super-individuals (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380008000574
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:214:y:2008:i:2:p:141-152
DOI: 10.1016/j.ecolmodel.2008.02.002
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().