EconPapers    
Economics at your fingertips  
 

Effect of a coupled soil water–plant gas exchange on forest energy fluxes: Simulations with the coupled vegetation–boundary layer model HIRVAC

Björn Fischer, Valeri Goldberg and Christian Bernhofer

Ecological Modelling, 2008, vol. 214, issue 2, 75-82

Abstract: Long-living plant communities such as forests reduce their transpiration by closing and opening the leaf stomata as a common strategy to save water in dry periods. Meteorological models including vegetation should consider this mechanism to simulate realistic water transport from the plant to the atmosphere. Results of the German network project VERTIKO showed that commonly used meso-models such as Lokalmodell (German Weather Service) often overestimate evapotranspiration of vegetated surfaces during dry periods. This is, among other things, due to the insufficient plant-specific coupling between the soil water content and the physiological reactions of leaf stomata in the implemented SVAT modules. This study presents an approach to describe the above-mentioned coupling mechanism by upgrading the coupled vegetation boundary layer model HIRVAC. A stomatal reaction on soil moisture change, which is a part of HIRVAC, is parameterised in the included mechanistic photosynthesis model for C3 plants (PSN6).

Keywords: Atmospheric boundary layer model; Forest energy fluxes; Soil moisture; Water stress; Stomatal reaction (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030438000800121X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:214:y:2008:i:2:p:75-82

DOI: 10.1016/j.ecolmodel.2008.02.037

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:214:y:2008:i:2:p:75-82