Bridging the gap between ecophysiological and genetic knowledge to assess the adaptive potential of European beech
K. Kramer,
J. Buiteveld,
M. Forstreuter,
T. Geburek,
S. Leonardi,
P. Menozzi,
F. Povillon,
M.J. Schelhaas,
E. Teissier du Cros,
G.G. Vendramin and
D.C. van der Werf
Ecological Modelling, 2008, vol. 216, issue 3, 333-353
Abstract:
In this study we aimed to combine knowledge of the ecophysiology and genetics of European beech to assess the potential of this species to adapt to environmental change. Therefore, we performed field and experimental studies on the genetic and ecophysiological functioning of beech. This information was integrated through a coupled genetic–ecophysiological model for individual trees that was parameterized with information derived from our own studies or from the literature. Using the model, we evaluated the adaptive response of beech stands in two ways: firstly, through sensitivity analyses (of initial genetic diversity, pollen dispersal distance, heritability of selected phenotypic traits, and forest management, representing disturbances) and secondly, through the evaluation of the responses of phenotypic traits and their genetic diversity to four management regimes applied to 10 study plots distributed over Western Europe. The model results indicate that the interval between recruitment events strongly affects the rate of adaptive response, because selection is most severe during the early stages of forest development. Forest management regimes largely determine recruitment intervals and thereby the potential for adaptive responses. Forest management regimes also determine the number of mother trees that contribute to the next generation and thereby the genetic variation that is maintained. Consequently, undisturbed forests maintain the largest amount of genetic variation, as recruitment intervals approach the longevity of trees and many mother trees contribute to the next generation. However, undisturbed forests have the slowest adaptive response, for the same reasons.
Keywords: Adaptive potential; Ecophysiology; Genetics; Fagus sylvatica L.; Forest management; ForGEM (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380008002287
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:216:y:2008:i:3:p:333-353
DOI: 10.1016/j.ecolmodel.2008.05.004
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().