A modeling study on methylmercury bioaccumulation and its controlling factors
Eunhee Kim,
Robert P. Mason and
Christine M. Bergeron
Ecological Modelling, 2008, vol. 218, issue 3, 267-289
Abstract:
The objectives of this study were: (1) to develop a methylmercury (MeHg) bioaccumulation model using data from STORM (high bottom Shear realistic water column Turbulence Resuspension Mesocosms) experiments; and (2) to use the model as a diagnostic tool to examine an effect of sediment resuspension and other important factors on MeHg bioaccumulation. There were four mesocosm experiments (1–4) conducted both in summer and fall. Tidal resuspension (4h on- and 2h off-cycles) was simulated using the STORM facility at CBL, UMCES (Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science). The model results showed that changes in clam biomass had a great effect on phytoplankton and zooplankton biomass, and consequently MeHg accumulation. In addition, it appeared that sediment resuspension played a role in transferring the enhanced sediment MeHg into organisms inhabiting both water column and sediment.
Keywords: Mercury; Methylmercury; Bioaccumulation model; Sediment resuspension; Mercury methylation; Methylmercury demethylation (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380008003499
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:218:y:2008:i:3:p:267-289
DOI: 10.1016/j.ecolmodel.2008.07.008
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().