Mathematical analysis of change in forest carbon use efficiency with stand development: A case study on Abies veitchii Lindl
Kazuharu Ogawa
Ecological Modelling, 2009, vol. 220, issue 11, 1419-1424
Abstract:
Changes in carbon use efficiency (CUE), which is defined as the ratio of net primary production (NPP) to gross primary production (GPP), were analyzed for Abies veitchii Lindl. forests with respect to stand development by developing a simple mathematical model incorporating data on physiological variables and leaf mass ratio. A decrease in CUE with stand development was successfully expressed as a function of stand biomass (y) based on the following three assumptions: (1) a power-law relationship between mean respiration and mean individual tree mass, (2) a power-functional relationship between mean gross primary production and mean individual tree mass, and (3) self-thinning relationship between stand biomass and density. Based on this model, a parameter of CUE–y relationship was defined, and it was clarified that CUE decrease with stand development is caused not by the ratio of specific respiration rate to specific gross photosynthetic rate, but by leaf mass ratio. Since CUE is high in young forests, helpful information on selecting woody species when planting seedlings was provided from the viewpoints of reducing CO2 in the atmosphere and global warming.
Keywords: Abies veitchii Lindl.; Carbon use efficiency; Forest stand development; Gross primary production; Leaf mass ratio; Net primary production (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009001835
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:11:p:1419-1424
DOI: 10.1016/j.ecolmodel.2009.03.004
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().