Effects of the spatial pattern of disturbance on the patch-occupancy dynamics of juniper–pine open woodland
Concepción L. Alados,
Yolanda Pueyo,
Juan Escós and
Antonio Andujar
Ecological Modelling, 2009, vol. 220, issue 12, 1544-1550
Abstract:
Typically, studies of the disturbance effect on metapopulation dynamics are limited to understanding the effect of habitat loss although, recently, the spatial pattern of the disturbance has been shown to influence dynamics. In this study, we used a stochastic patch-dynamic model to investigate the effects of spatial disturbance patterns on the persistence of an open woodland community of Juniperus spp. and Pinus spp. First, we estimated patch-occupancy dynamics by using the coefficients that best predicted the occupancy observed in 1998 based on occupancy data from 1957. Next, we evaluated the effects of the rate and pattern of the disturbance on the extinction probability. In modeling the disturbance, we considered (1) the degree of disturbance produced by scenarios of complete destruction or degradation (with the potential for recolonization), (2) the overall rate of disturbance, and (3) the spatial autocorrelation of habitat destruction. Twenty 40-year simulations predicted a 25% increase in the number of patches, and when 50% of the habitat was removed, the impact was more pronounced after complete destruction than it was after degradation of the area. Predictions based on scenarios of complete destruction, including random, contiguous, Brownian, and autoregressive noise, demonstrated that the impact of disturbance depends upon the spatial structure of the disturbance regimen. The autocorrelated structure of the disturbance regimen had the greatest impact on patch persistence. Patch-occupancy was higher after 20 40-year simulations when habitat loss was randomly distributed than when it followed an autocorrelated patch destruction, which was simulated using autoregressive noise to produce 50% habitat destruction. In addition, while habitat loss was negatively linearly correlated with patch persistence when habitat destruction was randomly distributed, a dramatic transition shift occurred when habitat destruction was simulated following an autoregressive spatial distribution after a certain threshold of habitat destruction (40% of the actual open woodland habitat). Our study suggests that the spatial patterns of the disturbance should be considered when predicting the consequences of fragmentation and improving management strategies.
Keywords: Fragmentation; Metapopulation; Metacommunity; Spatial autocorrelation; Ebro Valley; Spain (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009002282
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:12:p:1544-1550
DOI: 10.1016/j.ecolmodel.2009.03.029
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().