The dual nature of ecosystem dynamics
Robert E. Ulanowicz
Ecological Modelling, 2009, vol. 220, issue 16, 1886-1892
Abstract:
Mechanistic simulation modeling has not generally delivered on its promise to turn ecology into more of a “hard” science. Rather, it appears that deeper insights into ecosystem functioning may derive from a new set of metaphysical assumptions about how nature functions. Force laws from physics are fundamentally incompatible with the heterogeneity and uniqueness that characterizes ecosystems. Instead, coherence, selection and centripetality are imparted to ecological systems by concatenations of beneficial processes—a generalized form of autocatalysis. These structure-enhancing configurations of processes are opposed by the ineluctable tendency of structure to decay (as required by the second law of thermodynamics). The dual nature of this agonism can be quantified using information theory, which also can be used to measure the potential of the system for further evolution. The balance point for these countervailing tendencies seems to coincide with the state of maximal potential for the system to evolve. In an ostensible paradox, the same locus seems to attract stable, persistent system configurations.
Keywords: Ascendency; Autocatalysis; Centripetality; Dialectic; Ecosystems; Metaphysics (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (42)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009002695
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:16:p:1886-1892
DOI: 10.1016/j.ecolmodel.2009.04.015
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().