A coupled ecological–hydrodynamic model for the spatial distribution of sessile aquatic species in thermally forced basins
Lorenzo Mari,
Cristian Biotto,
Astrid Decoene and
Luca Bonaventura
Ecological Modelling, 2009, vol. 220, issue 18, 2310-2324
Abstract:
The life cycle of several sessile or highly sedentary aquatic species is characterized by a pelagic stage, during which propagules are dispersed by the water flow. As a consequence, hydrodynamics plays a crucial role in redistributing offspring. In this work, we describe an integrated modeling framework that couples a minimal – yet biologically well founded – ecological model for the population dynamics at the local scale to an efficient numerical model of three dimensional free surface flows in a thermally forced basin. The computed hydrodynamical fields are employed in a Lagrangian description of larval transport at the basin scale. The developed modeling framework has been applied to a realistic case study, namely the spread of an idealized aquatic sedentary population in Lake Garda, Italy. The analysis of this case study shows that the long-term interplay between demography and hydrodynamics can produce complex spatiotemporal dynamics. Our results also evidence that larvae can travel over relatively long distances even in a closed basin. A sensitivity analysis of the model outcomes shows that both biological traits and external forcings may remarkably influence the evolution of diffusion patterns in space and time.
Keywords: Larval dispersal; Diffusion patterns; Connectivity matrix; Hydrodynamics; Thermally forced flows; Limnology; Lagrangian modeling; Numerical methods (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009003366
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:18:p:2310-2324
DOI: 10.1016/j.ecolmodel.2009.05.012
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().