Competition, predation and coexistence in a three trophic system
M. Florencia Carusela,
Fernando R. Momo and
Lilia Romanelli
Ecological Modelling, 2009, vol. 220, issue 19, 2349-2352
Abstract:
Simple ecological models that mostly operate with population densities using continuous variables, explain quite well the behavior of real populations. In this work we propose and discuss the continuous dynamics of a system of three species, which belongs to the well-known family of Lotka–Volterra models. In particular, the proposed model includes direct effects such as predation and competition among species, and indirect effects such as refuge. The model is proposed to explain recent studies about a group of crustacean (amphipods of genus Hyallela) found in all the plain streams and shallow lakes of the American continent. The studied system includes three compartments: algae, a strictly herbivore amphipod and an omnivore (herbivore and carnivore) one. The analysis of the model shows that there are stable extinction equilibria throughout all the parameters’ space. There are also equilibria with stable coexistence of the three species and two interesting binary equilibria: one with stable coexistence of algae and herbivore and other with coexistence between algae and omnivore amphipods. The presence of Allee effect in the algae growth and the existence of refuge for the herbivore amphipod (prey) determine a bottom-up control.
Keywords: Population dynamics; Continuous models; Trophic systems; Amphipods (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009004001
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:19:p:2349-2352
DOI: 10.1016/j.ecolmodel.2009.06.008
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().