The power of simulating experiments
Katrin M. Meyer,
Wolf M. Mooij,
Matthijs Vos,
W.H. Gera Hol and
Wim H. van der Putten
Ecological Modelling, 2009, vol. 220, issue 19, 2594-2597
Abstract:
Addressing complex ecological research questions often requires complex empirical experiments. However, due to the logistic constraints of empirical studies there is a trade-off between the complexity of experimental designs and sample size. Here, we explore if the simulation of complex ecological experiments including stochasticity-induced variation can aid in alleviating the sample size limitation of empirical studies. One area where sample size limitations constrain empirical approaches is in studies of the above- and belowground controls of trophic structure. Based on a rule- and individual-based simulation model on the effect of above- and belowground herbivores and their enemies on plant biomass, we evaluate the reliability of biomass estimates, the probability of experimental failure in terms of missing values, and the statistical power of biomass comparisons for a range of sample sizes. As expected, we observed superior performance of setups with sample sizes typical of simulations (n=1000) as compared to empirical experiments (n=10). At low sample sizes, simulated standard errors were smaller than expected from statistical theory, indicating that stochastic simulation models may be required in those cases where it is not possible to perform pilot studies for determining sample sizes. To avoid experimental failure, a sample size of n=30 was required. In conclusion, we propose that the standard tool box of any ecologist should comprise a combination of simulation and empirical approaches to benefit from the realism of empirical experiments as well as the statistical power of simulations.
Keywords: Sample size; Replication; Individual-based simulation model; Experimental design; Statistical power; Stochasticity (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009004086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:19:p:2594-2597
DOI: 10.1016/j.ecolmodel.2009.06.001
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().