Consideration of fuzziness: Is it necessary in modelling fish habitat preference of Japanese medaka (Oryzias latipes)?
Shinji Fukuda
Ecological Modelling, 2009, vol. 220, issue 21, 2877-2884
Abstract:
The present study aims to clarify the necessity and effectiveness of considering fuzziness in modelling fish habitat preference, and the advantages which would be achieved by considering it. For this purpose, genetic algorithm (GA) optimized habitat preference models under three different levels of fuzzification were compared with regard to prediction ability of the habitat use of Japanese medaka (Oryzias latipes) dwelling in agricultural canals in Japan. Field surveys were conducted in agricultural canals in Japan to establish a relationship between fish habitat preference and physical environments of water depth, current velocity, lateral cover ratio and percent vegetation coverage. The habitat preference models employed for testing the fuzzy-based approach were category model, fuzzy habitat preference model, and fuzzy habitat preference model with fuzzy inputs. All the models were developed at 50 different initial conditions. The effectiveness of the fuzzification in fish habitat modelling was assessed by comparing mean square error and standard deviation of the models, and fluctuation in habitat preference curves evaluated by each model. As a result, the effect of fuzzification appeared as smoother curves and was found to reduce fluctuation in habitat preference curves in proportion to the level of fuzzification. The smooth curves would be appropriate for expressing uncertainty in habitat preference of the fish, by which fuzzy habitat preference model with fuzzy input achieve the best prediction ability among the models. In conclusion, the present study revealed that there are two advantages of fuzzification: reducing fluctuations in habitat preference evaluation and improving prediction ability of the model. Therefore, the consideration of fuzziness would be appropriate for representing fish habitat preference under natural conditions.
Keywords: ECEM 07; Fish habitat; Habitat prediction model; Fuzzification; Fuzzy set theory; Fuzzy logic; Genetic algorithm (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009000222
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:21:p:2877-2884
DOI: 10.1016/j.ecolmodel.2008.12.025
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().