Multiple sources of predictive uncertainty in modeled estimates of net ecosystem CO2 exchange
Stephen Mitchell,
Keith Beven and
Jim Freer
Ecological Modelling, 2009, vol. 220, issue 23, 3259-3270
Abstract:
Net ecosystem CO2 exchange (NEE) is typically measured directly by eddy covariance towers or is estimated by ecosystem process models, yet comparisons between the data obtained by these two methods can show poor correspondence. There are three potential explanations for this discrepancy. First, estimates of NEE as measured by the eddy-covariance technique are laden with uncertainty and can potentially provide a poor baseline for models to be tested against. Second, there could be fundamental problems in model structure that prevent an accurate simulation of NEE. Third, ecosystem process models are dependent on ecophysiological parameter sets derived from field measurements in which a single parameter for a given species can vary considerably. The latter problem suggests that with such broad variation among multiple inputs, any ecosystem modeling scheme must account for the possibility that many combinations of apparently feasible parameter values might not allow the model to emulate the observed NEE dynamics of a terrestrial ecosystem, as well as the possibility that there may be many parameter sets within a particular model structure that can successfully reproduce the observed data. We examined the extent to which these three issues influence estimates of NEE in a widely used ecosystem process model, Biome-BGC, by adapting the generalized likelihood uncertainty estimation (GLUE) methodology. This procedure involved 400,000 model runs, each with randomly generated parameter values from a uniform distribution based on published parameter ranges, resulting in estimates of NEE that were compared to daily NEE data from young and mature Ponderosa pine stands at Metolius, Oregon. Of the 400,000 simulations run with different parameter sets for each age class (800,000 total), over 99% of the simulations underestimated the magnitude of net ecosystem CO2 exchange, with only 4.07% and 0.045% of all simulations providing satisfactory simulations of the field data for the young and mature stands, even when uncertainties in eddy-covariance measurements are accounted for. Results indicate fundamental shortcomings in the ability of this model to produce realistic carbon flux data over the course of forest development, and we suspect that much of the mismatch derives from an inability to realistically model ecosystem respiration. However, difficulties in estimating historic climate data are also a cause for model-data mismatch, particularly in a highly ecotonal region such as central Oregon. This latter difficulty may be less prevalent in other ecosystems, but it nonetheless highlights a challenge in trying to develop a dynamic representation of the terrestrial biosphere.
Keywords: Net ecosystem exchange; Biome-BGC; Ecosystem Model; Uncertainty; GLUE; Pinus ponderosa; Model-data synthesis (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009006000
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:23:p:3259-3270
DOI: 10.1016/j.ecolmodel.2009.08.021
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().