EconPapers    
Economics at your fingertips  
 

A general process-based mass-balance model for phosphorus/eutrophication as a tool to estimate historical reference values for key bioindicators, as exemplified using data for the Gulf of Riga

Lars Håkanson

Ecological Modelling, 2009, vol. 220, issue 2, 226-244

Abstract: This work describes how a general, process-based mass-balance model (CoastMab) for phosphorus for coastal areas may be used as a tool to estimate realistic values of “natural” or preindustrial reference levels of key bioindicators in coastal science, including the Secchi depth, a standard measure of water clarity, the chlorophyll-a concentration, an operational measure of phytoplankton biomass and the concentration of cyanobacteria, a measure of the concentration of harmful algae. The CoastMab-model is an ecosystem model giving monthly predictions to achieve seasonal variations of basin-wide properties. The selected case-study area, the Gulf of Riga, is sensitive to nutrient loading because of its shallowness and low openness towards the Baltic Proper. The morphometry of any coastal area, as given by the size and form parameters, influences all internal processes, such as sedimentation, resuspension, diffusion in water and from sediments to water, biouptake and retention in biota, stratification, mixing and outflow. There has been no mass-balance modeling for nitrogen (N) in this work because empirical data (from the HELCOM database) clearly indicate that the monthly primary production in the Gulf of Riga is regulated by phosphorus (P) – the mean monthly total-N to total-P ratios are well over 7.2 (the Redfield-ratio) and generally higher than 15 for the data used in this study (from 1992 to 2005). At present anthropogenic loads, the average modeled monthly values for Secchi depth, chlorophyll (Chl), cyanobacteria (CB) and total-P (TP) are 3.2m, 3.8μg/l, 78μg/l and 31.3μg/l, respectively. If 50% of all anthropogenic sources to the Gulf of Riga via rivers, point sources and diffuse sources were to be removed, these values would be 3.6m, 3.4μg Chl/l, 63μg CB/l and 29.1μg TP/l. If 60% of the anthropogenic phosphorus fluxes to the Baltic Proper were to be omitted and as well as 75% of all direct anthropogenic sources to the Gulf of Riga, the values would be 4.6m, 2.7μg Chl/l, 45μg CB/l and 25.4μg TP/l. These values represent the “natural” reference levels and it is not realistic to expect that remedial measures would improve the conditions more than that. Using the CoastWeb-model, similar calculations can be made for any given coastal area and the data necessary for such calculations are discussed in this work.

Keywords: Coastal waters; Nutrients; Eutrophication; Baltic Sea; Gulf of Riga; Mass-balance modeling; Bioindicators; Secchi depth; Chlorophyll; Cyanobacteria (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380008004341
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:2:p:226-244

DOI: 10.1016/j.ecolmodel.2008.09.012

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:220:y:2009:i:2:p:226-244