Population dynamics of Müllerian mimicry under interspecific competition
Fuga Kumazawa,
Takahiro Asami,
Nariyuki Nakagiri,
Kei-ichi Tainaka,
Tatsuya Togashi,
Tatsuo Miyazaki and
Jin Yoshimura
Ecological Modelling, 2009, vol. 220, issue 3, 424-429
Abstract:
We ask what the effects of mutualism on population dynamics of two competitive species are. We model the population dynamics of mutualistic interactions with positive density- and frequency-dependences. We specifically assume the dynamics of Müllerian mimicry in butterflies, where the mortality of both species is reduced depending on the relative frequency of the other species. We assume that the two species are under Lotka–Volterra density-dependent competition. The equilibria are compared with the cases of competition alone. Unlike the traditional model of positive density-dependence, population explosion does not appear in the current dynamics, but the new equilibrium is simply achieved. It is because the effects of positive density- or frequency-dependence are restricted to parts of mortality. Both positive density- and frequency-dependences do promote coexistence of the mimetic species. However, the two models show a distinctive difference for coexistence. The effects of positive density-dependence are rather limited. In contrast, positive frequency-dependence always promotes coexistence, irrespective of environmental conditions. The results may imply that the evolutionary origin of Müllerian mimicry may depend on frequency-dependence (and density-dependence), but that its current population dynamics may depend solely on density-dependence. The role of frequency- and density-dependences on evolutionary dynamics is an open question.
Keywords: Müllerian mimicry; Density-dependence; Frequency-dependence; Mutualism (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380008005413
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:3:p:424-429
DOI: 10.1016/j.ecolmodel.2008.11.007
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().