Zooplankton encounters in patchy particle distributions
Daniela Cianelli,
Marco Uttieri,
J. Rudi Strickler and
Enrico Zambianchi
Ecological Modelling, 2009, vol. 220, issue 5, 596-604
Abstract:
Zooplankton encounter rates are dependent not only on both sensory and swimming performances of the organisms, but also on the distribution pattern of food particles. Increasing evidences indicate that, in natural conditions, phytoplankton is often aggregated in thin layers. In the present contribution we investigate the concomitant effects of motion complexity and habitat fragmentation on the number of encounters realised by virtual continuously moving copepods adopting different motion strategies. Our simulated organisms move in an environment characterised by the presence of thin patches of phytoplankton, and their swim follows five motion rules (pure random walk, correlated random walk with three different time scales, self-avoiding random walk), each characterised by a typical value of the three-dimensional fractal dimension D3D. Compared to a uniform distribution, for a given motion rule the clustering of prey particles increases the variance of encounters, while no remarkable effect is reported in the average number of particles intercepted. These results broaden our understanding of the behavioural efficiency in freely swimming zooplankters and improve our knowledge of the functioning of aquatic systems.
Keywords: Random walks; Self-avoiding random walks; Correlated random walks; Fractal dimension; Encounters; Patches (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380008005048
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:5:p:596-604
DOI: 10.1016/j.ecolmodel.2008.10.015
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().