An individual-based model to study the reproduction of egg bearing copepods: Application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary, France
Gael Dur,
Sami Souissi,
David Devreker,
Vincent Ginot,
François G. Schmitt and
Jiang-Shiou Hwang
Ecological Modelling, 2009, vol. 220, issue 8, 1073-1089
Abstract:
Limited empirical studies have elucidated the daily egg production and associated reproductive processes of egg bearing copepod. Herein, we present an individual-based model which constitutes a realistic representation of the reproduction in egg bearing copepods. The model has been parameterized using an extensive set of experimental data obtained from the literature and from the laboratory and field experiments on the estuarine copepod Eurytemora affinis. The proposed model takes into account the adult female longevity, the clutch size and interclutch duration, which is a function of egg maturation time and latency time required by the female after egg hatching to produce a new clutch. The embryonic development time and hatching success are also taken into account. The effect of temperature on the means and variances of above-mentioned reproductive parameters has been also incorporated. A multi agent system based generic platform “Mobidyc” has been used to generate and calibrate the model. The model demonstrates the reproductive parameters of females of E. affinis which is validated through individual based experiments. Temperature specific simulations provide a dynamical explanation of temperature effect on the cumulative egg production. The daily survival principally affects the number of clutches produced per female during its life span. The results obtained in the present study by combining temperature and survival effects reveal the relatively greater importance of the first factor on the daily egg production of egg-carrying copepods. The present model is generic and hence easily applicable to other animals with comparable reproductive strategy.
Keywords: Egg carrying copepods; Reproduction; Individual based models; Eurytemora affinis (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380008005917
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:8:p:1073-1089
DOI: 10.1016/j.ecolmodel.2008.12.013
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().