Modelling the dynamics of coral reef macroalgae using a Bayesian belief network approach
Henk Renken and
Peter J. Mumby
Ecological Modelling, 2009, vol. 220, issue 9, 1305-1314
Abstract:
Macroalgae are a major benthic component of coral reefs and their dynamics influence the resilience of coral reefs to disturbance. However, the relative importance of physical and ecological processes in driving macroalgal dynamics is poorly understood. Here we develop a Bayesian belief network (BBN) model to integrate many of these processes and predict the growth of coral reef macroalgae. Bayesian belief networks use probabilistic relationships rather than deterministic rules to quantify the cause and effect assumptions. The model was developed using both new empirical data and quantified relationships elicited from previous studies. We demonstrate the efficacy of the BBN to predict the dynamics of a common Caribbean macroalgal genus Dictyota. Predictions of the model have an average accuracy of 55% (implying that 55% of the predicted categories of Dictyota cover were assigned to the correct class). Sensitivity analysis suggested that macroalgal dynamics were primarily driven by top–down processes of grazing rather than bottom–up nutrification. BBNs provide a useful framework for modelling complex systems, identifying gaps in our scientific understanding and communicating the complexities of the associated uncertainties in an explicit manner to stakeholders. We anticipate that accuracies will improve as new data are added to the model.
Keywords: Bayesian belief network; Diadema antillarum; Dictyota spp.; Grazing pressure; Macroalgal dynamics; Nutrients; Scaridae (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009001525
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:9:p:1305-1314
DOI: 10.1016/j.ecolmodel.2009.02.022
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().