A heuristic approach to predicting water beetle diversity in temporary and fluctuating waters
Juan C. Gutiérrez-Estrada and
David T. Bilton
Ecological Modelling, 2010, vol. 221, issue 11, 1451-1462
Abstract:
An understanding of the causal mechanisms and processes that shape macroinvertebrate communities at a local scale has important implications for the management and conservation of freshwater biodiversity. Here we compare the performance of linear and non-linear statistics to explore diversity–environment relationships using data from 76 temporary and fluctuating ponds in two regions of southern England. We focus on aquatic beetle assemblages, which have been shown to be excellent surrogates of wider freshwater macroinvertebrate diversity. Ponds in the region contained a rich coleopteran fauna, totaling 68 species, which provided an excellent model system with which to compare the performance of two non-linear procedures (artificial neural networks—ANNs and generalised additive models—GAMs) and one more traditional linear approach (Multiple linear regression—MLR) to modelling diversity–environment relationships. Of all approaches employed, the best fit was obtained using an ANN model with only four input variables (conductivity, turbidity, magnesium concentration and depth). This model accounted for 82% of the observed variability in Shannon diversity index across ponds. In contrast, the best GAM and MLR models only explained 50% and 14% of this variation, respectively. Contribution profile analysis of conductivity, turbidity, magnesium concentration and depth, obtained from the best fit ANN through a hierarchical cluster analysis, allowed the identification of direct and proxy effects in relation to the environmental variables measured in this study. In each case, distinct clusters of ponds were identified in contribution profile analysis, suggesting that ponds across the two regions fall into a number of discrete groups, whose beetle faunas respond in subtly yet significantly different ways to key environmental variables. Aquatic coleopteran diversity in ponds in the two regions appears to be driven at a local scale by changes in relatively few physicochemical gradients, which are related to diversity in a clearly non-linear manner.
Keywords: Artificial neural network (ANN); Generalised additive model (GAM); Multiple linear regression (MLR); Physicochemistry; Species diversity; Macroinvertebrates (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010001419
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:11:p:1451-1462
DOI: 10.1016/j.ecolmodel.2010.03.007
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().