A Voronoi diagram based population model for social species of wildlife
Christopher William Stewart and
Rodney van der Ree
Ecological Modelling, 2010, vol. 221, issue 12, 1554-1568
Abstract:
A population model is presented that accounts for spatial structure within habitat patches. It is designed for social species of wildlife that form social group home ranges that are much smaller than patch size. The model represents social group home ranges by Voronoi regions that tessellate a patch to form a Voronoi diagram. Neighbouring social groups are linked with habitat-confined shortest paths and form a dispersal network. The model simulates population dynamics and makes use of Voronoi diagrams and dispersal networks as a spatial component. It then produces density maps as outputs. These are maps that show predicted animal densities across the patches of a landscape. A construction procedure for the particular Voronoi diagram type used by the model is described. As a test case, the model is run for the squirrel glider (Petaurus norfolcensis), a small arboreal marsupial native to Australia. A time series of density maps are produced that show squirrel glider density changing across a landscape through time.
Keywords: Density map; Population model; Quadtree; Shortest path; Social group; Voronoi diagram (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030438001000164X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:12:p:1554-1568
DOI: 10.1016/j.ecolmodel.2010.03.019
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().