EconPapers    
Economics at your fingertips  
 

Using an individual-based model to quantify scale transition in demographic rate functions: Deaths in a coral reef fish

Richard R. Vance, Mark A. Steele and Graham E. Forrester

Ecological Modelling, 2010, vol. 221, issue 16, 1907-1921

Abstract: Scientifically informed population management requires quantitatively accurate demographic rate functions that apply at the spatial scale at which populations are actually managed, but practical constraints confine most field measurements of such functions to small study plots. This paper employs an individual-based population growth model to extrapolate the death rate function in a well-studied coral reef fish, the bridled goby Coryphopterus glaucofraenum, from the scale of 2m×2m coral reef “cells” at which it was measured to the larger scale of an entire coral reef. Density dependence in the whole-reef function actually proves stronger than in the local function because high goby density occasionally arises in local patches with few refuges from predators, producing very high mortality there. This IBM-based approach extends the reach of scale transition theory by examining considerably more realistic models than standard analytical methods can presently handle.

Keywords: Coral reef fish; Coryphopterus glaucofraenum; Death rate function; Density-dependent mortality; Habitat; Individual-based model; Metapopulation; Scale transition; Spatial heterogeneity; Spatially averaged function (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010002164
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:16:p:1907-1921

DOI: 10.1016/j.ecolmodel.2010.04.014

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:221:y:2010:i:16:p:1907-1921