EconPapers    
Economics at your fingertips  
 

Imposed and inherent scales in cellular automata models of habitat

Peter D. Craig

Ecological Modelling, 2010, vol. 221, issue 20, 2425-2434

Abstract: Both observational and modelling studies of the natural environment are characterised by their ‘grain’ and ‘extent’, the smallest and largest scales represented in time and space. These are imposed scales that should be chosen to ensure that the natural scales of the system are captured in the study. A simple cellular automata model of habitat represents only the presence or absence of vegetation, with global and local interactions described by four empirical parameters. Such a model can be formulated as a nonlinear Markov equation for the habitat probability. The equation produces inherent space and time scales that may be considered as transition scales or the scales for recovery from disturbance. However, if the resolution of the model is changed, the empirical parameters must be changed to preserve the properties of the system. Further, changes in the spatial resolution lead to different interpretations of the spatial structure. In particular, as the resolution is reduced, the apparent dominance of one habitat type over the other increases. The model provides an ability to compare both field and model investigations conducted at different resolutions in time and space.

Keywords: Habitat model; Kelp beds; Cellular automata; Markov model; Space scales; Time scales; Model resolution (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010003510
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:20:p:2425-2434

DOI: 10.1016/j.ecolmodel.2010.07.011

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:221:y:2010:i:20:p:2425-2434