Application of a temperature-dependent von Bertalanffy growth model to bullhead (Cottus gobio)
J. Kielbassa,
M.L. Delignette-Muller,
D. Pont and
S. Charles
Ecological Modelling, 2010, vol. 221, issue 20, 2475-2481
Abstract:
The most studied and commonly applied model of fish growth is the von Bertalanffy model. However, this model does not take water temperature into account, which is one of the most important environmental factors affecting the life cycle of fish, as many physiological processes that determine growth, e.g. metabolic rate and oxygen supply, are directly influenced by temperature. In the present study we propose a version of the von Bertalanffy growth model that includes mean annual water temperatures by correlating the growth coefficient, k, explicitly and the asymptotic length, L∞, implicitly to water temperature. All relationships include parameters with an obvious biological relevance that makes them easier to identify. The model is used to fit growth data of bullhead (Cottus gobio) at different locations in the Bez River network (Drme, France). We show that temperature explains much of the growth variability at the different sampling sites of the network.
Keywords: Growth model; Model comparison; Warming scenario; Cottus gobio; River network (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010003261
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:20:p:2475-2481
DOI: 10.1016/j.ecolmodel.2010.07.001
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().