An Integrated Monte Carlo Methodology for the calibration of water quality models
C. Martin and
E. Ayesa
Ecological Modelling, 2010, vol. 221, issue 22, 2656-2667
Abstract:
This paper proposes an Integrated Monte Carlo Methodology (IMCM) to solve the parameter estimation problem in water quality models. The methodology is based on Bayesian approach and Markov Chain Monte Carlo techniques and it operates by means of four modules: Markov Chain Monte Carlo (MCMC), Moving Feasible Ranges (MFR), Statistical Analysis of the Joint Posterior Distribution (SAD) and Uncertainty Propagation Analysis (UPA). The main innovation of the new proposal lies in the combination of MCMC and MFR modules which provides the joint posterior distribution of the calibrated parameters following the classical Bayesian approach. While MCMC module, based on Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm, is specially designed to sample complex joint posterior shapes within certain parameter ranges, the MFR readjusts these ranges until the coverage of the feasible parameter space is guaranteed. Once the joint posterior distribution is properly defined, the SAD provides the parameter statistics and the UPA performs an analysis of the uncertainty propagation through the model. The possibilities of the new proposal have been tested on the basis of a simple model featuring different activated sludge batch experiments. IMCM has been implemented in Matlab and it is prepared to be easily connected to any software package.
Keywords: Markov Chain Monte Carlo algorithms; Calibration methods; Uncertainty propagation; SCEM-UA; Water quality models (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010004035
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:22:p:2656-2667
DOI: 10.1016/j.ecolmodel.2010.08.008
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().