Fish recruitment prediction, using robust supervised classification methods
Jose A. Fernandes,
Xabier Irigoien,
Nerea Goikoetxea,
Jose A. Lozano,
Iñaki Inza,
Aritz Pérez and
Antonio Bode
Ecological Modelling, 2010, vol. 221, issue 2, 338-352
Abstract:
Improving our ability to predict recruitment is a key element in fisheries management. However, the interactions between population dynamics and different environmental factors are complex and often non-linear, making it difficult to produce robust predictions. ‘Machine-learning’ techniques (in particular, supervised classification methods) have been proposed as useful tools, to overcome such difficulties. In this study, a methodology is proposed to build a robust classifier for fish recruitment prediction with sparse and noisy data. The methodology consists of 4 steps: (1) a semi-automated recruitment discretization method; (2) supervised discretization of predictors; (3) multivariate and non-redundant predictors selection; (4) learning a probabilistic classifier. In terms of fisheries management, the classifier estimated performance has important consequences and, to be useful, the manager needs to know the risk that is being taken when using this number. Probabilistic classifiers such as ‘naive Bayes’, have the advantage that, in addition to the predictions, estimate also the probability of each possible outcome. Anchovy (Engraulis encrasicolus) and hake (Merluccius merluccius) recruitments are used as application examples. ‘Two-intervals’ recruitment discretization accomplishes 70% accuracies and Brier scores of around 0.10, for both anchovy and hake recruitment. In comparison, ‘three-intervals’ recruitment discretization accomplishes 50% accuracies; and Brier scores of around 0.25 for anchovy and 0.30 for hake recruitment. These statistics are the result of validating not only the classifier, but also the previous steps, as a whole methodology.
Keywords: Supervised classification; Ecological modelling; Fish recruitment; Discretization; Feature selection; Climate; Anchovy; Hake (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009006437
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:2:p:338-352
DOI: 10.1016/j.ecolmodel.2009.09.020
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().