EconPapers    
Economics at your fingertips  
 

The interplay of sex ratio, male success and density-independent mortality affects population dynamics

Thomas Schmickl and Istvan Karsai

Ecological Modelling, 2010, vol. 221, issue 8, 1089-1097

Abstract: Environmental constraints can limit a population to a certain size, which is usually called the carrying capacity of a habitat. Besides to this ‘external’ factor, which is mainly determined by the limitation of resources, we investigate here another set of population-intrinsic factors that can limit a population size significantly below the maximum sustainable size. Firstly, density-independent mortality is a prominent factor in all organisms that show age-related and/or accidental death. Secondly, in sexually reproducing organisms the sex ratio and the success of pairing is important for finding reproductive partners. Using a simple model, we demonstrate how sex ratio, mating success and gender-specific mortality can strongly affect the speed of population growth and the maximum population size. In addition, we demonstrate that density-independent mortality, which is often neglected in population models, adds a very important feature to the system: it strongly enhances the negative influence of unbiased sex ratios and inefficient pairing to the maximum sustainable population size. A decrease of the maximum population size significantly affects a population's survival chance in inter-specific competition. Thus, we conclude that the inclusion of density-independent mortality is crucial, especially for models of species that reproduce sexually. We show that density-independent mortality, together with biased sex ratios, can significantly lower the abilities of a population to survive in conditions of strong inter-specific competition and due to the Allee effect. We emphasize that population models should incorporate the sex ratio, male success and density-independent mortality to make plausible predictions of the population dynamics in a gender-structured population. We show that the population size is limited by these intrinsic factors. This is of high ecological significance, because it means that there will always be resources available in any habitat that allows other species (e.g., invaders) to use these resources and settle successfully, if they are sufficiently adapted.

Keywords: Population dynamics; Mathematical model; Sex ratio; Male success; Density-independent mortality; Competition (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010000219
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:8:p:1089-1097

DOI: 10.1016/j.ecolmodel.2009.12.028

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:221:y:2010:i:8:p:1089-1097