Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests
Wim Aertsen,
Vincent Kint,
Jos van Orshoven,
Kürşad Özkan and
Bart Muys
Ecological Modelling, 2010, vol. 221, issue 8, 1119-1130
Abstract:
Forestry science has a long tradition of studying the relationship between stand productivity and abiotic and biotic site characteristics, such as climate, topography, soil and vegetation. Many of the early site quality modelling studies related site index to environmental variables using basic statistical methods such as linear regression. Because most ecological variables show a typical non-linear course and a non-constant variance distribution, a large fraction of the variation remained unexplained by these linear models. More recently, the development of more advanced non-parametric and machine learning methods provided opportunities to overcome these limitations. Nevertheless, these methods also have drawbacks. Due to their increasing complexity they are not only more difficult to implement and interpret, but also more vulnerable to overfitting. Especially in a context of regionalisation, this may prove to be problematic. Although many non-parametric and machine learning methods are increasingly used in applications related to forest site quality assessment, their predictive performance has only been assessed for a limited number of methods and ecosystems.
Keywords: Artificial neural networks; Boosted regression trees; Forest site classification; Generalized additive models; Multi-criteria decision analysis; Multiple linear regression; Predictive modelling (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010000463
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:8:p:1119-1130
DOI: 10.1016/j.ecolmodel.2010.01.007
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().