EconPapers    
Economics at your fingertips  
 

A stage-structured, Aedes albopictus population model

Richard A. Erickson, Steven M. Presley, Linda J.S. Allen, Kevin R. Long and Stephen B. Cox

Ecological Modelling, 2010, vol. 221, issue 9, 1273-1282

Abstract: Aedes albopictus has been the fastest spreading invasive animal species in the world from the mid-1980s until the mid-2000s. In areas it infests, it disrupts native mosquito ecology and can potentially vector up to 21 viruses. To better understand the population dynamics of this species, we created a temperature dependent population model. A stage-structured model was chosen to allow each life-stage to have different temperature dependent mortality and development rates, and each stage was modeled with an ordinary differential equation. Model parameters and distributions were based upon literature values. Initially, a basic model was constructed. This model then had parameters that were forced based upon daily average temperatures. Several criteria were used to evaluate the model, including a comparison to field data from Lubbock, TX. In a stochastic version of the model, a 95% confidence limit contained 70.7% of the field data points. Based upon these results, we feel reasonably confident that we have captured the role of temperature in driving the population dynamics of Ae. albopictus.

Keywords: Disease vector; Invasive species; Medical entomology; Mosquito ecology (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010000578
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:9:p:1273-1282

DOI: 10.1016/j.ecolmodel.2010.01.018

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:221:y:2010:i:9:p:1273-1282