New hydroepidemiological models of indicator organisms and zoonotic pathogens in agricultural watersheds
Graham B. McBride and
Steven C. Chapra
Ecological Modelling, 2011, vol. 222, issue 13, 2093-2102
Abstract:
Simple analytical models are derived to assess how a series of cattle animal farms affect the transport and fate of an indicator organism (Escherichia coli) and a zoonotic pathogen (Campylobacter) in a stream. Separate steady-state mass-balance models are developed and solved for the ultimate minimum and maximum concentrations for the two organisms. The E. coli model assumes that the organism is ubiquitous and abundant in the animals’ digestive tracts. In contrast, a simple dose–response model is employed to relate the Campylobacter prevalence to drinking water drawn from the stream. Because faecal indicators are commonly employed to assess the efficacy of best management practice (BMP) interventions, we also employ the models to assess how BMPs impact pathogen levels. The model provides predictions of (a) the relative removal efficacy for Campylobacter and (b) the prevalence of Campylobacter infection among farm animals after implementation of BMPs. Dimensionless numbers and simple graphs are developed to assess how prevalence is influenced by a number of factors including animal density and farm spacing. A significant outcome of this model development is that the numerous dimensional input and parameter variables are reduced to a group of just four dimensionless Campylobacter-related quantities, characterizing: animal density; in-stream attenuation; animal-to-animal transmission; and infection recovery. Calculations reveal that for some constellations of these four quantities there can be a greater-than-expected benefit in that the proportional reduction of stream Campylobacter concentrations post-BMP can substantially exceed the proportional reduction of concentrations of E. coli in that stream. In addition, a criterion for system sterility (i.e., the conditions required for the farm infection rate to decrease with downstream distance) is derived.
Keywords: Campylobacter; E. coli; Faecal indicators; Waterborne pathogens; Best management practices; Hydroepidemiology; Stream; River (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030438001100216X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:222:y:2011:i:13:p:2093-2102
DOI: 10.1016/j.ecolmodel.2011.04.008
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().