Modelling and mapping topographic variations in forest soils at high resolution: A case study
Paul N.C. Murphy,
Jae Ogilvie,
Fan-Rui Meng,
Barry White,
Jagtar S. Bhatti and
Paul A. Arp
Ecological Modelling, 2011, vol. 222, issue 14, 2314-2332
Abstract:
This article examines the utility of a digitally derived cartographic depth-to-water (DTW) index to model and map variations in drainage, vegetation and soil type and select soil properties within a forested area (40ha) of the Swan Hills, Alberta, Canada. This index was derived from a LiDAR (Light Detection and Ranging) derived digital elevation model (DEM), with at least 1 ground return per m2. The resulting DTW pattern was set to be zero along all DEM-derived flow channels, each with a 4ha flow-initiation threshold. Soil type (luvisol, gleysol, mesisol), drainage type (very poor to excessive), vegetation type (hydric to xeric) and forest floor depth were determined along hillslope transects. These determinations conformed more closely to the DEM-derived log10(DTW) variations (R2>60%) than to the corresponding variations of the widely used topographic wetness index (TWI) (R2<25%). Setting log10(DTW) thresholds to represent the wet to moist to dry transitions between vegetation, drainage and soil type enabled a high-resolution mapping of these types across the study area. Also determined were soil moisture content, coarse fragment and soil particle composition (sand, silt, clay), pH, total C, N, S, P, Ca, Mg, K, Fe, Al, Mn, Zn, and available Ca, Mg, K, P and NH4, by soil layer type and depth. Most of these variables were also more correlated with log10(DTW) than with TWI, with and without soil layer depth as an additional regression variable. These variables are, therefore, subject to topographic controls to at least some extent, and can be modelled and mapped accordingly, as illustrated for soil moisture, forest floor depth and pH across the study area, from ridge tops to depressions. Further examinations revealed that the DEM-produced DTW and TWI patterns complemented one another, with DTW delineating soils in relation to local water-table influences, and with TWI delineating where the water would flow and accumulate.
Keywords: Soil topo-sequence; Soil catena; Physical and chemical soil properties; Bare-ground LiDAR DEM; Terrain attributes; Alberta Foothills (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380011000251
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:222:y:2011:i:14:p:2314-2332
DOI: 10.1016/j.ecolmodel.2011.01.003
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().