A novel method for mapping reefs and subtidal rocky habitats using artificial neural networks
Michael J. Watts,
Yuxiao Li,
Bayden D. Russell,
Camille Mellin,
Sean D. Connell and
Damien A. Fordham
Ecological Modelling, 2011, vol. 222, issue 15, 2606-2614
Abstract:
Reefs and subtidal rocky habitats are sites of high biodiversity and productivity which harbour commercially important species of fish and invertebrates. Although the conservation management of reef associated species has been informed using species distribution models (SDM) and community based approaches, to date their use has been constrained to specific regions where the locality and spatial extent of reefs is well known. Much of the world's subtidal habitats remain either undiscovered or unmapped, including coasts of intense human use. Consequently, to facilitate a stronger understanding of species–environmental relationships there is an urgent need for a cost and time effective standard method to map reefs at fine spatial resolutions across broad geographical extents. We used bathymetric data (∼250m resolution) to calculate the local slope and curvature of the seabed. We then constructed artificial neural networks (ANNs) to forecast the probability of reef occurrence within grid cells as a function of bathymetric and slope variables. Testing over an independent data set not used in training showed that ANNs were able to accurately predict the location of reefs for 86% of all grid cells (Kappa=0.63) without over fitting. The ANN with greatest support, combining bathymetric values of the target grid cell with the slope of adjacent grid cells, was used to map inshore reef locations around the Southern Australian coastline (∼250m resolution). Broadly, our results show that reefs are identifiable from coarse-scale bathymetry data of the seabed. We anticipate that our research technique will strengthen systematic conservation planning tools in many regions of the world, by enabling the identification of rocky substratum and mapping in localities that remain poorly surveyed due to logistics or monetary constraints.
Keywords: Subtidal rocky habitat; Reefs; Artificial neural networks; Bathymetry (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380011002547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:222:y:2011:i:15:p:2606-2614
DOI: 10.1016/j.ecolmodel.2011.04.024
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().