EconPapers    
Economics at your fingertips  
 

A large-scale multi-species spatial depletion model for overwintering waterfowl

Johannes M. Baveco, Harold Kuipers and Bart A. Nolet

Ecological Modelling, 2011, vol. 222, issue 20, 3773-3784

Abstract: In this paper, we develop a model to evaluate the capacity of accommodation areas for overwintering waterfowl, at a large spatial scale. Each day geese are distributed over roosting sites. Based on the energy minimization principle, the birds daily decide which surrounding fields to exploit within the reserve boundaries. Energy expenditure depends on distance to the roost and weather conditions. Food intake rate is determined by functional responses, and declines with consumption. A shortage occurs when birds cannot fulfil their daily energy requirement. Most foraging takes place on pasture, with complementary feeding for some of the species on cereals and harvest remains. We applied the model to five waterfowl species overwintering in the Netherlands. From a comparison with field data, the model appears to produce realistic grazing pressures on pasture, especially for geese, and a realistic decline in sward height, but the use of arable fields is less in agreement with observations. For current goose and wigeon numbers, hardly any shortages are expected, but extrapolating the population increase observed during the last decade, considerable shortages are expected in the near future (2015). However, we find that several uncertainties may contribute to more severe shortages: a probabilistic (and therefore less optimal) choice of foraging location, a shorter maximum distance to the roost, and a lower effective availability of resources due to disturbances and other edge effects. Between species we find both competition and facilitation. Both type of interactions, as well as the spatial pattern of resource exploitation, are explained from functional responses and energetic costs of the species.

Keywords: Central-place foraging; Crop damage control; Energy minimization principle; Wildlife management; Functional response on sward height; Grazing waterfowl (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380011004728
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:222:y:2011:i:20:p:3773-3784

DOI: 10.1016/j.ecolmodel.2011.09.012

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:222:y:2011:i:20:p:3773-3784