Intertype mark correlation function: A new tool for the analysis of species interactions
Alicia Ledo,
Sonia Condés and
Fernando Montes
Ecological Modelling, 2011, vol. 222, issue 3, 580-587
Abstract:
The spatial pattern of the different species in complex ecosystems reflects the underlying ecological processes. In this paper a second order moment function is proposed and tested to analyse the spatial distribution of a mark, which could be a tree characteristic such as diameter or height, between two different types of points, which could be two different tree species. The proposed function was a conditional density function based on the intertype Krs(d) function, incorporating as test function the correlation of the marks between pairs composed of points of different types. The results obtained in simulated and real plots prove that the function is capable of revealing the scale at which spatial correlation of the mark between two types of points exists. The proposed function allows the spatial association between individuals of different species at different life stages to be identified. This analysis may reveal information on species ecology and interspecific interactions in forest ecosystems.
Keywords: Bivariate point process; Interspecific interactions; Mark correlation; Marked point process; Ripley's K function; Spatial pattern (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010005958
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:222:y:2011:i:3:p:580-587
DOI: 10.1016/j.ecolmodel.2010.10.029
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().