Model based grouping of species across environmental gradients
Piers K. Dunstan,
Scott D. Foster and
Ross Darnell
Ecological Modelling, 2011, vol. 222, issue 4, 955-963
Abstract:
We present a novel approach to the statistical analysis and prediction of multispecies data. The approach allows the simultaneous grouping and quantification of multiple species’ responses to environmental gradients. The underlying statistical model is a finite mixture model, where mixing is performed over the individual species’ responses to environmental gradients. Species with similar responses are grouped with minimal information loss. We term these groups species archetypes. Each species archetype has an associated GLM that can be used to predict distributions with appropriate measures of uncertainty. Initially, we illustrate the concept and method using artificial data and then with application to real data comprising 200 species from the Great Barrier Reef (GBR) lagoon on 13 oceanographic and geological gradients from 12°S to 24°S. The 200 species from the GBR are well represented by 15 species archetypes. The model is interpreted through maps of the probability of presence for a fine scale set of locations throughout the study area. Maps of uncertainty are also produced to provide statistical context. The presence of each species archetype was strongly influenced by oceanographic gradients, principally temperature, oxygen and salinity. The number of species in each group ranged from 4 to 34. The method has potential application to the analysis of multispecies distribution patterns and for multispecies management.
Keywords: Species archetype; Finite mixture model; Grouping; Biodiversity; Prediction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010006393
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:222:y:2011:i:4:p:955-963
DOI: 10.1016/j.ecolmodel.2010.11.030
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().