EconPapers    
Economics at your fingertips  
 

The effects of direct and indirect constraints on biological communities

Romain Lorrillière, Denis Couvet and Alexandre Robert

Ecological Modelling, 2012, vol. 224, issue 1, 103-110

Abstract: Human activities are expected to result in a diversity of directional or stochastic constraints that affect species either directly or by indirectly impacting their resources. However, there is no theoretical framework to predict the complex and various effects of these constraints on ecological communities. We developed a dynamic model that mimics the use of different resource types by a community of competing species. We investigated the effects of different environmental constraints (affecting either directly the growth rate of species or having indirect effects on their resources) on several biodiversity indicators. Our results indicate that (i) in realistic community models (assuming uneven resource requirements among species) the effects of perturbations are strongly buffered compared to neutral models; (ii) the species richness of communities can be maximized for intermediate levels of direct constraints (unimodal response), even in the absence of trade-off between competitive ability and tolerance to constraints; (iii) no such unimodal response occurs with indirect constraints; (iv) an increase in the environmental (e.g., climatic) variance may have different effects on community biomass and species richness.

Keywords: Community; Constraint; Biodiversity indicators; Disturbance; Mechanistic model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030438001100500X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:224:y:2012:i:1:p:103-110

DOI: 10.1016/j.ecolmodel.2011.10.015

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:224:y:2012:i:1:p:103-110