Multiplex modeling of physical habitat for endangered freshwater mussels
Piotr Parasiewicz,
Elena Castelli,
Joseph N. Rogers and
Ethan Plunkett
Ecological Modelling, 2012, vol. 228, issue C, 66-75
Abstract:
Quantification of the potential habitat available for endangered freshwater mussels can be a challenging task, as habitat use criteria are very complex and often only low numbers of species observations are available. To address this problem in a riverine environment, we developed a concept of a multivariate, multi-scale, and multi-model (multiplex) habitat simulation through combining multivariate time-series analysis of complex hydraulics (CART and logistic regression), micro-scale (River2D), and meso-scale (MesoHABSIM) habitat models, to develop macro-scale management criteria. This concept has been applied and tested on the Upper Delaware River (USA) for the protection and enhancement of existing populations of Alasmidonta heterodon, an endangered freshwater mussel. The physical habitat conditions of approximately 125km of the Delaware River were described using digital aerial imagery and ground-based surveys. The temporal and spatial variabilities of complex hydraulics simulated by a River2D model at 1547 locations were statistically analyzed to select ranges of attributes that corresponded to mussel presence. We applied these criteria to the river's meso-scale hydromorphological unit mappings to identify suitable mesohabitats, which then served as a calibration data set for the coarser scale model. The final meso-scale model's predictions were hydraulically validated offering encouraging results. The meso-scale habitat suitability criteria defined moderately deep, slow-flowing, and non-turbulent hydromorphologic units as providing good conditions for A. heterodon. All three of the developed suitability models (descriptive statistics, CART and logistic regression model) indicated the species preference for hydraulically stable habitats.
Keywords: Endangered species; Dwarf wedgemussel; Habitat modeling; Suitability criteria; Complex hydraulics; Multi-scale model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380011006119
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:228:y:2012:i:c:p:66-75
DOI: 10.1016/j.ecolmodel.2011.12.023
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().