A high-resolution model of soil and surface water conditions
Ilya M.D. Maclean,
Jonathan J. Bennie,
Amanda J. Scott and
Robert J. Wilson
Ecological Modelling, 2012, vol. 237-238, 109-119
Abstract:
Soil moisture and surface water conditions are key determinants of plant community composition and ecosystem function, and predicting such conditions is an important step in understanding the ecological consequences of environmental change. Typically, hydrological models that use real landscape features do not simulate water conditions at the fine spatial and temporal scales that are meaningful to many plant species and ecological processes. We present a hydrological model that simulates daily soil moisture and surface water conditions at a spatial resolution of 1m×1m. The model is applied to 16km2 of the Lizard Peninsula, UK. The model is kept computationally efficient by combining a simple lumped parameter basin approach with the distributed hydrological effects of basin topography. We also model the complex flows occurring between small basins. Code for running the model using R statistical software is provided as supplementary material. As inputs, the model uses widely available daily weather variables, 1m×1m resolution digital elevation data (LiDAR) and some simple vegetation and soil characteristics identifiable from aerial photographs. Our results indicate that when inter-basin water exchanges and the distributed effects of topography within each basin are not accounted for, the model performs less well than just assuming average conditions in time or space. However, modelling inter-basin water flow also substantially increases computer run-time. The full model is capable of correctly simulating a broad range of hydrological and soil moisture conditions, providing accurate predictions for areas that range from permanently wet through to permanently dry, as well as for ephemeral wetlands with highly variable water levels. We discuss some potential ecological applications of the model, for example in guiding conservation management.
Keywords: Mediterranean temporary pond; Vernal pool; Ephemeral wetland; Variable contributing area; Hydrology; Climate change (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380012001457
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:237-238:y:2012:i::p:109-119
DOI: 10.1016/j.ecolmodel.2012.03.029
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().