EconPapers    
Economics at your fingertips  
 

Optimal selection of marine protected areas based on connectivity and habitat quality

Moa Berglund, Martin Nilsson Jacobi and Per R. Jonsson

Ecological Modelling, 2012, vol. 240, issue C, 105-112

Abstract: Networks of nature reserves and protected areas are important instruments to protect biodiversity, including harvested populations. Selection of marine protected networks (MPA) will depend on both the connectivity of concerned species and the habitat quality of individual sites. We explore the relative effect of connectivity and habitat quality on solutions for optimal networks of MPA using eigenvalue perturbation theory and a metapopulation model. Based on analyses of both synthetic networks and realistic connectivities for a sessile invertebrate with planktonic larvae in the Baltic Sea, we show that connectivity is expected to be more efficient than habitat quality as a selection criterion for MPA networks with realistic probabilities of local recruitment. In a second series of analyses we explore the effect of temporal variability of connectivity on the selection of optimal MPA networks. We show that optimal solutions of MPA networks converged when based on 8–10 years of connectivity information, corresponding to the time scale of the North-Atlantic oscillation. In conclusion, this study indicates that connectivity may be more important than habitat quality as selection criterion for MPAs when targeting species with long-distance dispersal that is typical for many marine invertebrates and fish. Our study also shows that connectivity patterns may be relatively consistent in time which suggests that the recent progress in biophysical modelling can offer a framework for optimal selection of MPA networks based on connectivities, which should improve guidelines for the design of functional MPA networks.

Keywords: Protected areas; Conservation; Dispersal; Connectivity; Habitat quality; Eigenvalue perturbation theory; Networks (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380012001779
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:240:y:2012:i:c:p:105-112

DOI: 10.1016/j.ecolmodel.2012.04.011

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-07
Handle: RePEc:eee:ecomod:v:240:y:2012:i:c:p:105-112