A diffusive logistic growth model to describe forest recovery
Miguel A. Acevedo,
Mariano Marcano and
Robert J. Fletcher
Ecological Modelling, 2012, vol. 244, issue C, 13-19
Abstract:
Land-use and land-cover change (LUCC) has broad implications for biodiversity, climate and ecosystem services. Even though LUCC often focuses on forest fragmentation, forest recovery is another form of LUCC that is becoming increasingly common. Understanding the process of forest recovery is a conservation and management priority; however, it is a difficult process to understand given the large number of factors that interact in a complex spatio-temporal setting. Reaction diffusion models provide an appropriate framework to study the complex dynamics of forest recovery because they account for both spatial structure and the dynamics of land-cover classes. Here, we describe a diffusive logistic growth (DLG) model to quantify forest recovery. We define a system in which forest diffuses through a non-forest matrix. The model consists of a diffusion term that describes the spread of forest in continuous space and time, and a logistic growth reaction that describes change in the proportion of forest. To illustrate model parameterization, we used the DLG approach to describe forest recovery in Puerto Rico from 1951 to 1991–1992. The model showed that forest recovery in Puerto Rico was explained by a positive intrinsic growth rate of forest and relatively slow diffusion. This mechanistic modeling approach presents a novel way to study forest recovery in continuous space and time while accounting for spatial dependency.
Keywords: Diffusion; Fisher's equation; Forest recovery; Land-cover; Puerto Rico; Reaction-diffusion (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380012003390
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:244:y:2012:i:c:p:13-19
DOI: 10.1016/j.ecolmodel.2012.07.012
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().