Ecological exergy as an indicator of land-use impacts on functional guilds in river ecosystems
Fengqing Li,
Mi-Jung Bae,
Yong-Su Kwon,
Namil Chung,
Soon-Jin Hwang,
Sang-Jung Park,
Hae-Kyung Park,
Dong Soo Kong and
Young-Seuk Park
Ecological Modelling, 2013, vol. 252, issue C, 53-62
Abstract:
The cumulative effect of land-use changes is one of the most important factors contributing to the continuous deterioration of river ecosystems. We used ecological exergy to evaluate the impacts of land-use changes on functional guilds of benthic macroinvertebrates. We classified 353 sampling sites into 3 groups based on land-use types: forested, agricultural, and urban rivers. For each sampling site, we calculated ecological exergy based on 5 trophic groups of macroinvertebrates. Differences in exergy, specific exergy, and structural metrics (i.e. species richness and Shannon index) suggested that land-use type was an important determinant of the composition of macroinvertebrate communities. Exergy values of the functional feeding groups and trophic groups were used as input data to train self-organizing maps – unsupervised artificial neural networks. The results showed that functional guilds responded differently to different land-use types: scrapers and carnivores dominated the forested rivers, whilst predators and omnivores, and gatherer-collectors and detritivores dominated agricultural and urban rivers, respectively. These results suggest that ecological exergy can be used as a functional bioassessment indicator to evaluate river condition. A generalized additive model and random forest also highlighted that a combination of both conventional structural indicators (e.g. species richness and Shannon index) and novel functional indicators (e.g. exergy and specific exergy) can be used to assess biotic integrity.
Keywords: Ecological exergy; Macroinvertebrates; Functional feeding groups; Trophic groups; Land use types; Ecological indicator; Self-organizing map; Generalized additive model; Random forest (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380012004711
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:252:y:2013:i:c:p:53-62
DOI: 10.1016/j.ecolmodel.2012.09.006
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().