Modeling the effect of temperature, solar radiation and salinity on Bolboschoenus maritimus sequestration of mercury
Pedro M. Anastácio,
Bruna Marques and
Ana I. Lillebø
Ecological Modelling, 2013, vol. 256, issue C, 31-42
Abstract:
Some tidal wetland halophytes are extremely important for pollution control but due to global climate change, wetlands and their ecosystem services may suffer considerable modifications. In this context we modeled the growth and mercury (Hg) sequestration by Bolboschoenus maritimus on the most contaminated area of a temperate shallow coastal lagoon historically subjected to heavy Hg load, under gradients of climate driven variables. For calibration purposes we used field data on temperature, salinity, solar radiation, plant biomass, plant decomposition and mercury concentration in the plants. Ten different methods evaluated model performance. We then simulated B. maritimus mercury sequestration under different environmental scenarios involving increases and decreases in temperature, salinity and cloud cover. The largest effects were related to high salinity scenarios but all variables presented an inverse relation with Hg-sequestration. Our results point to a progressive decrease on Hg-sequestration until the end of the century.
Keywords: Mercury; Halophyte growth; Modeling; Ria de Aveiro; Portugal (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013000975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:256:y:2013:i:c:p:31-42
DOI: 10.1016/j.ecolmodel.2013.02.013
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().