Modeling the pH in the tidal fresh Potomac River under conditions of varying hydrology and loads
Carl F. Cerco,
Tammy Threadgill,
Mark R. Noel and
Scott Hinz
Ecological Modelling, 2013, vol. 257, issue C, 101-112
Abstract:
The pH of the freshwater portion of the Potomac River estuary attains 9–10.5, driven by photosynthesis during cyanobacteria blooms. Processes which contribute to elevated pH are examined by adding a mass-balance model of the carbonate cycle to an existing eutrophication model. Four new variables are added to the model suite: alkalinity, total inorganic carbon, total calcium, and calcium carbonate. The pH is computed from these four quantities via equilibrium kinetics. The model is employed in a continuous simulation of the years 1994–2000. Emphasis in examination of model results is placed on the tidal fresh portion of the system where elevated pH is an environmental concern. Model sensitivity analysis indicates hydrology has the greatest influence on pH. During low-flow periods, residence time is lengthy allowing ample time for algal production to occur. The production stimulates net uptake of TIC, and results in enhanced pH.
Keywords: pH; Alkalinity; Carbonate cycle; Potomac River; Cyanobacteria (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013000951
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:257:y:2013:i:c:p:101-112
DOI: 10.1016/j.ecolmodel.2013.02.011
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().