EconPapers    
Economics at your fingertips  
 

Combining system dynamics and hybrid particle swarm optimization for land use allocation

Xiaoping Liu, Jinpei Ou, Xia Li and Bin Ai

Ecological Modelling, 2013, vol. 257, issue C, 11-24

Abstract: Urban land use spatial allocation is crucial to lots of countries that are usually under severe environmental and demographic pressures, because it can be used to alleviate some land use problems. A number of models have been proposed for the optimal allocation of land use. However, most of these models only address the suitability of individual land use types and spatial competition between different land uses at micro-scales, but ignore macro-level socio-economic variables and driving forces. This article proposes a novel model (SDHPSO-LA) that integrates system dynamics (SD) and hybrid particle swarm optimization (HPSO) for solving land use allocation problems in a large area. The SD module is used to project land use demands influenced by economy, technology, population, policy, and their interactions at macro-scales. Furthermore, particle swarm optimization (PSO) is modified by incorporating genetic operators to allocate land use in discrete geographic space. The SDHPSO-LA model was then applied to a case study in Panyu, Guangdong, China. The experiments demonstrated the proposed model had the ability to reflect the complex behavior of land use system at different scales, and can be used to generate alternative land use patterns based on various scenarios.

Keywords: Land use allocation; System dynamics; Hybrid particle swarm optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013001300
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:257:y:2013:i:c:p:11-24

DOI: 10.1016/j.ecolmodel.2013.02.027

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:257:y:2013:i:c:p:11-24