Contrasting specialization–stability relationships in plant–animal mutualistic systems
Gita Benadi,
Nico Blüthgen,
Thomas Hovestadt and
Hans-Joachim Poethke
Ecological Modelling, 2013, vol. 258, issue C, 65-73
Abstract:
Specialization has often been suggested as one of the main factors influencing the stability of ecological systems at the population and community level. Generally, highly specialized systems are believed to be the most sensitive toward disturbances, as the dependence of specialized species on the availability of particular resources or partner species is greatest. The flip side of specialization is, however, that it reduces the intensity of interspecific competition and thus the risk of extinction through competitive exclusion. Moreover, since ecological stability is a highly ambiguous concept, general statements about the relationship between specialization and stability cannot be made based on a single stability criterion. In this study, we examine the relationship between specialization and stability in plant–animal mutualistic systems using a population dynamic model with two species in each group. We compare results for four different stability criteria, both for a general type of plant–animal mutualism and specifically for a plant–pollinator system. Contrary to previous studies which concluded that specialization increases system vulnerability to disturbances, we find that positive, negative and unimodal relationships are possible depending on the stability criterion applied and the characteristics of species interactions. Our results call for further investigations of the consequences of ecological specialization, and emphasize the special properties of pollination mutualisms.
Keywords: Mutualism; Pollination; Specialization; Stability; Resilience; Equilibrium (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013001518
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:258:y:2013:i:c:p:65-73
DOI: 10.1016/j.ecolmodel.2013.03.002
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().