Discrete and continuous time simulations of spatial ecological processes predict different final population sizes and interspecific competition outcomes
Rebecca Mancy,
Patrick Prosser and
Simon Rogers
Ecological Modelling, 2013, vol. 259, issue C, 50-61
Abstract:
Cellular automata (CAs) are commonly used to simulate spatial processes in ecology. Although appropriate for modelling events that occur at discrete time points, they are also routinely used to model biological processes that take place continuously. We report on a study comparing predictions of discrete time CA models to those of their continuous time counterpart. Specifically, we investigate how the decision to model time discretely or continuously affects predictions regarding long-run population sizes, the probability of extinction and interspecific competition. We show effects on predicted ecological outcomes, finding quantitative differences in all cases and in the case of interspecific competition, additional qualitative differences in predictions regarding species dominance. Our findings demonstrate that qualitative conclusions drawn from spatial simulations can be critically dependent on the decision to model time discretely or continuously. Contrary to our expectations, simulating in continuous time did not incur a heavy computational penalty. We also raise ecological questions on the relative benefits of reproductive strategies that take place in discrete and continuous time.
Keywords: Cellular automaton; Discrete time; Continuous time; Spatial Gillespie simulator; Interspecific competition (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013001701
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:259:y:2013:i:c:p:50-61
DOI: 10.1016/j.ecolmodel.2013.03.013
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().