EconPapers    
Economics at your fingertips  
 

Modeling seabird bycatch in the U.S. Atlantic pelagic longline fishery: Fixed year effect versus random year effect

Yan Li and Yan Jiao

Ecological Modelling, 2013, vol. 260, issue C, 36-41

Abstract: Year is usually modeled as a fixed effect in catch rate analyses because the annual variation is of interest. However, question rises when annual estimates are sensitive to whether modeling year as a random or a fixed effect. With the observer data from the National Marine Fisheries Service Pelagic Observer Program during 1997–2010, we conducted a simulation study using the delta model due to high percentage of zero observations in the observer data. The delta model consisted of two sub-models, one for modeling positive catch data, i.e., the longline sets with at least one seabird caught (positive catch sub-model) and the other for estimating the probability of catching seabirds (probability sub-model). We constructed five scenarios where data contained no year effect, fixed year effect, and random year effect with three increasing randomness, and evaluated the performance of three candidate models in terms of mean absolute error and mean bias. The three candidate models included the delta model where both sub-models had data select year based on its significance, the delta model where both sub-models fixed year in the model regardless of its significance, and the delta model where both sub-models modeled year as a random effect. Results showed that the model with random-year-effect performed the best in all scenarios for analyzing the positive catch data, followed by the one having data select year and the one with year fixed regardless of its significance. For estimating the probability of catching seabirds, performance of the three candidate models were competing in all scenarios except for one scenario where the probability sub-model having data select year performed the best. Combining the two sub-models, the random-year-effect delta model showed superiority over the other two candidate models for estimating seabird bycatch in the longline fishery. We suggest conducting such a simulation study in seabird bycatch assessment, especially in cases where yearly estimates from the random-year-effect and the fixed-year-effect models show great discrepancy.

Keywords: Seabird bycatch; Longline fishery; Delta model; Fixed year effect; Random year effect (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013001786
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:260:y:2013:i:c:p:36-41

DOI: 10.1016/j.ecolmodel.2013.03.021

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:260:y:2013:i:c:p:36-41