Integration of unsupervised and supervised neural networks to predict dissolved oxygen concentration in canals
Sirilak Areerachakul,
Peraphon Sophatsathit and
Chidchanok Lursinsap
Ecological Modelling, 2013, vol. 261-262, 1-7
Abstract:
The main focus of this paper was to devise a method to accurately predict the amount of dissolved oxygen (DO) in Bangkok canals at the present month based on the following 13 water quality parameters collected the previous month: temperature, pH value (pH), hydrogen sulfide (H2S) content, DO, biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total kjeldahl nitrogen (TKN), ammonia nitrogen (NH3N), nitrite nitrogen (NO2N), nitrate nitrogen (NO3N), total phosphorous (T-P), and total coliform (TC). Accurately predicting the amount of DO in a canal via scientific deduction is an important step in efficient water management and health care planning. We proposed a new technique that enhances the prediction accuracy by constructing a set of sub-manifolds of the predicting function by deploying unsupervised and supervised neural networks. The data were obtained from the Bangkok Metropolitan Administration Department of Drainage and Sewerage during the years 2007–2011. Comparisons between our proposed technique and other techniques using the correlation coefficient (R), the mean absolute error (MAE), and the mean square error (MSE) showed that our proposed approach with the sub-space clustering technique yielded higher accuracy than did other approaches without the sub-space clustering technique.
Keywords: Sub-space clustering; Clustering techniques; Supervised and unsupervised neural networks; Water management (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013001919
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:261-262:y:2013:i::p:1-7
DOI: 10.1016/j.ecolmodel.2013.04.002
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().