Use of growth functions to describe disease vector population dynamics—Additional assumptions are required and are important
John H.M. Thornley and
James France
Ecological Modelling, 2013, vol. 266, issue C, 97-102
Abstract:
Some important diseases are carried by vectors which can infect susceptible hosts or be infected by infectious hosts. Growth functions may be applied to the vector population. Many growth functions can be constructed from an underlying differential-equation model where birth and mortality processes are identified explicitly. However, this is possible in a variety of ways. The model could be applied to (say) a midge population where infection by a virus is possible when a susceptible midge bites an infectious host, giving rise to incubating and then infectious categories of midge. An infectious midge can then, if biting an uninfected host, infect that host, leading to pathogenic consequences. The submodel used for the vector population partially defines overall disease dynamics, which not only depend on the growth function chosen but also on any extra assumptions about birth and mortality processes which do not affect the growth function per se. The logistic equation is an example of a sigmoidal asymptotic growth function, the asymptote being attained when births and mortality occur at equal rates. Traditionally in the logistic, the interpretation is that birth rate is constant and mortality rate increases as the population increases. A rate function, constant or variable, may be added to both birth and mortality rates without changing total vector population dynamics from the logistic. However, the dynamics of propagation of infection can be substantially different with different assumptions about birth and mortality. This is highly relevant to studies of diseases such as bluetongue in ruminants (involving midges) or dengue in humans (where mosquitoes are involved).
Keywords: Disease; Vector; Dynamics; Logistic; Bluetongue; Dengue (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013003232
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:266:y:2013:i:c:p:97-102
DOI: 10.1016/j.ecolmodel.2013.06.028
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().