An explicit and computationally efficient method to initialise first-order-based soil organic matter models—The Geometric Series Solution (GSS)
H. Wong,
J. Hillier,
D.B. Clark,
J. Smith and
P. Smith
Ecological Modelling, 2013, vol. 267, issue C, 48-53
Abstract:
This paper derives an algebraic solution (the Geometric Series Solution; GSS) to replace iterative runs of soil organic matter (SOM) models for initialisation of SOM pools. The method requires steady-state/long-term-average series of plant input and soil climate driving data. It calculates the values of SOM pools as if SOM models are iterated for a large number of cycles. The method has a high computational efficiency because it is an explicit solution to the calculations used to initialise the model and so requires a single iteration of the SOM model. Under the premise that the iterative pool inputs can be derived analytically, the GSS equations are applicable for other first-order-based SOM models. To illustrate applicability the method is applied to the coupled JULES-ECOSSE model.
Keywords: Algebraic method; Model initialisation; Soil organic matter (SOM); Spin-up; The ECOSSE model; The JULES model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013003591
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:267:y:2013:i:c:p:48-53
DOI: 10.1016/j.ecolmodel.2013.07.014
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().